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ABSTRACT

Explicit algebraic stress models that are valid for three-dimensional turbulent flows in
non-inertial frames are systematically derived from a hierarchy of second-order closure mod-
els. This represents a generalization of the model derived by Pope [J. Fluid Mech. 72, 331
(1975)] who based his analysis on the Launder, Reece and Rodi model restricted to two-
dimensional turbulent flows in an inertial frame. The relationship between the new models
and traditional algebraic stress models - as well as anistropic eddy viscosity models - is
theoretically established. The need for regularization is demonstrated in an effort to explain
why traditional algebraic stress models have failed in complex flows. It is also shown that
these explicit algebraic stress models can shed new light on what second-order closure models
predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful
alternative in practical computations.
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1. INTRODUCTION

Turbulent flows contain length and time scales that can change dramatically from one
flow configuration to the next. Consequently, two-equation turbulence models - wherein
transport equations are solved for two turbulent fields that are directly related to the length
and time scales - represent the simplest level of Reynolds stress closure that can be geometry
independent. This explains the current popularity of the K -e model which, unlike the older

mixing length models, does not require the specification of empirical length or time scales
that must be adjusted in an ad hoc fashion from one flow to the next (see Launder and
Spalding 1974). However, despite this positive feature, the K - 6 model shares a common
deficiency with the older mixing length models: it is based on the Boussinesq eddy viscosity
hypothesis. It is well-known that eddy viscosity models are unable to properly describe
turbulent flows with body force effects arising from curvature or a system rotation. Likewise,

their inaccurate prediction of normal Reynolds stress differences make eddy viscosity models
incapable of describing secondary flows in non-circular ducts (c.f. Lumley 1978, Launder 1990
and Speziale 1991). This has led to the development of nonlinear stress-strain relationships

in turbulence modeling that transcend the Boussinesq hypothesis - an area of research that

has received varying degrees of attention during the past three decades.

Early work on the development of turbulence models with a nonlinear stress-strain rela-
tion tended to be empirical in nature, relying on analogies with non-Newtonian flows (see

Rivlin 1957, Lumley 1970 and Saffman 1977). The similarities between the laminar flow of a
non-Newtonian fluid and the mean turbulent flow of a Newtonian fluid have long been rec-
ognized (see Hinze 1975 for an interesting discussion of this point). In these older empirical

models, which typically were obtained by simple tensor invariance arguments, the Reynolds
stresses were taken to be nonlinear polynomial functions of the mean velocity gradients. In
recent years, nonlinear Reynolds stress models of this type have been obtained within the
context of two-equation turbulence modeling by more formal expansion techniques incorpo-

rating, for example, the Direct Interaction Approximation (DIA) and the Renormalization

Group (RNG) (see Yoshizawa 1984, Speziale 1987, Rubinstein and Barton 1990, and Yakhot
et al. 1992). These models, which are characterized by an explicit relationship between the
Reynolds stress tensor and the mean velocity gradients (and possibly their time derivatives)

have come to be referred to as "anisotropic eddy viscosity models."
During the 1970's, second-order closure models became popular in which closure was

achieved based on the Reynolds stress transport equation where history and nonlocal effects
are accounted for. By means of an equilibrium hypothesis, in which the Reynolds stress
convection and transport terms were neglected, algebraic stress models were obtained from

second-order closures (see Rodi 1976). In these models, the Reynolds stresses were related



implicitly to the mean velocity gradients. This provided the first formal means, based on

a higher-order closure, to justify the extension of the Boussinesq hypothesis to incorporate

nonlinearities in the mean velocity gradients. However, this type of algebraic stress model

is cumbersome to implement in complex flows since the stress-strain relation is not explicit;

numerical stiffness problems can result from the need for successive matrix inversions at each

iteration.

In an interesting paper that has to a large extent gone unnoticed, Pope (1975) developed

a nonlinear Reynolds stress model by invoking the same equilibrium hypothesis as Rodi

(1976). However, Pope (1975) actually presented a methodology for obtaining an explicit

relation for the Reynolds stress tensor from the implicit algebraic equations that Rodi (1976)

obtained from the Launder, Reece and Rodi (1975) model. This methodology, which leads

to explicit algebraic stress models, is based on the use of integrity bases from linear algebra.

Due to the complexity of the algebra, Pope (1975) was only able to obtain a solution for

two-dimensional turbulent flows which he accomplished using the Launder, Reece and Rodi

model.

The main purpose of the present paper is to extend the results of Pope (1975) to three-

dimensional turbulent flows in non-inertial frames starting from a more general hierarchy of

second-order closure models - a task that is now feasible computationally via symbolic manip-

ulation. The relationship between these new explicit algebraic stress models and anisotropic

eddy viscosity models, as well as the older nonlinear Reynolds stress models, will be estab-

lished in a systematic fashion. There appears to be considerable confusion in the turbulence

literature concerning the relationship between these various types of nonlinear Reynolds

stress models that needs to be clarified. It will be shown that the new explicit algebraic

stress models represent the equilibrium Reynolds stress anisotropies predicted by second-

order closures in homogeneous turbulent flows. Consequently, beyond their potential use in

practical turbulence calculations, the explicit algebraic stress models to be derived herein

can be used to explore the predictive capabilities of a hierarchy of second-order closures in

homogeneous turbulence. These issues will be discussed in more detail in the sections to

follow.

2. THEORETICAL BACKGROUND

The incompressible turbulent flow of a viscous fluid will be considered where the velocity

v and kinematic pressure P are decomposed into ensemble mean and fluctuating parts as

follows:

v=V+u, P=-P+p. (1)
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The Reynolds stress tensor rij =_ u17ij is a solution of the transport equation (c.f. Hinze

1975):

Dri CO- ekr) + i'Vt (2)
Tik ýL - T- k -+ ,j--ej--2Qm(ek+ ,iik)+V+j (2)

Dt 0 Xk Oxk

which is valid in an arbitrary non-inertial reference frame that can undergo a rotation with

angular velocity f, relative to an inertial framing. In (2), D/Dt - 9/s1t + V. V is the

convective derivative, eijk is the permutation tensor, v is the kinematic viscosity, and

P = i + aOl (3)
( 9xj axJ

( = ix:o axk) (4)

VTO
(aXkij -W--X (VUjU + Pgm bk + F•- bk) (5)

are, respectively, the pressure-strain correlation, the dissipation rate tensor, and the turbu-

lent transport term. Turbulence models based on the Reynolds stress transport equation (2)

are referred to as "second-order closures" since (2) is obtained by taking a second moment

of the fluctuating Navier-Stokes equation.

Homogeneous turbulent flows in equilibrium, as well as regions of inhomogeneous turbu-

lent flows where there is a production-equals-dissipation equilibrium, satisfy the constraints:

Dbij
Dt -0 (6)

D• + vV 2r, - = 0 (7)

where

2K

is the anisotropy tensor (K -uIiui is the turbulent kinetic energy). In physical terms,

this is an equilibrium for which convective and transport effects can be neglected; it is the

basic equilibrium hypothesis used in the derivation of algebraic stress models. Although or

it constitutes an idealization, it is comforting to know that this equilibrium hypothesis

is achievable in interesting physical limits that include homogeneous shear flow and the 0

logarithmic region of an equilibrium turbulent boundary layer. __n-

It follows from (6) that
Dr, _ rij DK (9) _/ __

Dt K Dt ty CodeSAvail and/or
'Dist Spec
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and, hence, by making use of the contraction of (2) and (7), we obtain

D-i (P &)y (10)

where P - -rjO6Fi/Oxj is the turbulence production and E -c Eii is the scalar turbulent

dissipation rate. The substitution of (7) and (10) into (2) yields the following equilibrium
form of the Reynolds stress transport equation:

(9 , j vj 0 Ou
P- 6)" = -7-ik -j-k2 - + Tbk- -- Eij - 2 fl,,(e,,kjik + emkiTjk). (11)

K 09Xk xk

The dissipation rate tensor can be split into isotropic and deviatoric parts as follows

+ij = Ebij + Dgij. (12)

By making use of (8) and (12), we can rearrange (11) into the alternative form

(' - Obij - 3--KISj - K(bikSjk + bjkSik

2 --3br,.S..6ijj) - l [bik( Wjk + 2 e,,kjrnn) (13)

+ bik (Z&k+ 2 emkilirn)) I FJlii2

where
-- 1 O x, ,g - _ i) __g

a~ ax,(14)
Sij-- -a\x. a xi] ' ' 2 a~xj '9xi]14

I~Ij = -ij Deij. (15)

In all of the commonly used second-order closure models, Hlij is modeled in the general form
(see Lumley 1978, Reynolds 1987 and Speziale 1991):

Iij = EAi,(b) + KM 1ijk(b) a-. (16)

For non-inertial frames, a)k/Ox, is replaced with OaVk/Oxt + emtlrkQ, in (16). The substitu-
tion of (16) (with its non-inertial correction) into (13) yields a closed system of algebraic
equations for the determination of the Reynolds stress anisotropy in terms of the mean ve-

locity gradients. This constitutes the general form of algebraic stress models; the algebraic

stress model of Rodi (1976) is obtained when the Launder, Reece and Rodi model for Hi0
is introduced into (13) and non-inertial effects are neglected. It is clear that these algebraic
stress models are implicit in nature since the Reynolds stress tensor appears on both sides

of the equation. In the next section we will examine how explicit relations can be obtained

from (13).
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3. EXPLICIT ALGEBRAIC STRESS MODELS

When models for l-ij that are tensorially linear in the anisotropy tensor bij are considered,

it is possible to obtain an explicit expression for bij in terms of the mean velocity gradients.

This can be accomplished by techniques from linear algebra that make use of integrity bases

(namely, polynomial representations for isotropic tensor functions). Pope (1975) was the first

to show this by basing his analysis on the Launder, Reece and Rodi model which is the most

commonly used model for H ij that is a linear function of bij. We will extend the analysis of

Pope (1975) to a more general hierarchy of linear models for H i/ where non-inertial effects are

accounted for. Furthermore, our analysis will be conducted for three-dimensional turbulent

flows. Pope (1975) restricted his analysis to two-dimensional turbulent flows because of the

severe complexity of the algebra - an obstacle that we will overcome by using MathematicaTM

(Wolfram 1988).

It can be shown that the most general form of (16) that is tensorially linear in the

anisotropy tensor bij is given by (c.f. Reynolds 1987 and Speziale 1991):

Ilij = -ClEbij + C2 KS 3j + C3 K (bik'5jk + bjkSik - 3 bntL ij (17)

+C4 K(bikWjk + bjkWik)

where
Wij = + £mAm (18)

is the absolute vorticity tensor (namely, the vorticity tensor Eij relative to an inertial frame).

The coefficients CI - C4 can be functions of the invariants of bij and can depend on P•/ (of
course, (16) requires that, at most, Ci is a linear function of P/,). The model of Launder,

Reece and Rodi (1975), the model of Gibson and Launder (1978) and the linearized model
of Speziale, Sarkar and Gatski (1991) - where the quadratic part of the slow pressure-strain

correlation is neglected - are special cases of (17). For these models, we have the following

coefficients:

Launder, Reece and Rodi Model

C1 = 3.0, C2 = 0.8, C3 = 1.75, C4 = 1.31 (19)

Gibson and Launder Model

C, = 3.6, C2 = 0.8, C3 = 1.2, 04 = 1.2 (20)
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Speziale, Sarkar and Gatski Model

C, = 3.4 + 1.8P/k, C2 = 0.8 - 1.3IWI/2, C3 = 1.25, C4 = 0.40 (21)

where lb = bijbij. It should be noted that for sufficiently small anisotropies, more compli-

cated models can be approximated by the form (17).

The direct substitution of (17) into (13) yields the equation:

1 4)j_2b
bmnS,)bi 92 T I (02 - S3  + (03 - 2) (bik~Ik + bjk~k 2 -m9nni

(22)

+(C4 - 2) [bik (jk +C4 - 4 ern-wrn) + b.k (Zik + C4 4 emki ) }
where

2 +-- (23)

Kr = K (24)

If we introduce the dimensionless, rescaled variables:

,. = Igr(2 - C3)S3j (25)
2

=i~ 1gr(2 - C4) j~i + C~4' e 4 1 (26)
2 0i (0C4 -- 21 a

b = C2- 2 bi3  (27)

then (19) reduces to the simpler form

b* = -Sij - b,*S;k + b;kS:k s•,•i 3 + bi'W; + bkWI5. (28)

In matrix form, (28) can be written as

b* = -S* - (b*S* + S*b* - 2{b*S }I) + b*W* - W*b* (29)
3

where {-} denotes the trace and I denotes the unit tensor. This is a linear algebraic equation

for the determination of b* in terms of S* and W*; the solution to (29) is of the general

form

b" = f(S*,W*). (30)

Form invariance under an orthogonal coordinate transformation (with rotation tensor Q)

requires that

Qf(S*, W*)QT = f(QS*QT, QW*QT) (31)
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i.e., that f be an isotropic tensor function of its arguments. It can be shown that the

satisfaction of (31) requires that

b= G(\)T(\) (32)
A

where T(O) is the integrity basis for functions of a symmetric and antisymmetric tensor and

G(O) are scalar functions of the irreducible invariants of S* and W*. For the case under

consideration, the integrity basis is given by (see Spencer 1971 and Pope 1975):

TO) = S* T (6) = W*2S* + S*W*2 
-fS*W*2}I

T(2) = S -W* _ W*S* T(7) = W*S*W*2 - W*2S*W*

T(3) = S*2- 1{S*2}I T(8 ) = S*W*S-2- S*2W*S* (3:3)

T(4) = W*2 I •{W*2}I T(9) = W* 2S- 2 + S*2W" 2 _ 2{S*2W-2}I

TO5 ) = W*S*2 _S*2W TOO) = W*S*2W* 2 _ W*2S*2W*

The irreducible invariants of S* and W* are:

=1 {S*2 } (34)

712= {W } (35)

773 = {S*3} (36)

774 = {S*W* 2} (37)

715 = {S*2W*2 }. (38)

Hence, we have

G(\) = G(-)( 771,772 ,773,774,775), A = 1,2,... 10. (39)

Pope (1975) showed that for two-dimensional flows, only TO),T(2) and T(3), as well as nI

and 772, are independent. Consequently, the calculations become much simpler. Here, we

will obtain the three-dimensional solution using the same methodology that Pope used

The direct substitution of (32) into (28) yields

ZG(A)T(A) = - Z ElT() - • G(t)[T(A)S* + S*T() 2 {T((A)S*}I
A A A (40)

-TT(A)W* + W'T(A)]

where we have made use of the fact that TO) = S*. Since T(A) is an integrity basis we know

that

T(A)S* + S*T(A) - 2{T( A)S*}I = HAT() (41)
3
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T(A)W- - W'T(A) = JT(-) (42)
.-y

(i.e., any polynomial in S* and W* can be expanded in the integrity bases; see Spencer 1971

and Pope 1975). The 10 x 10 matrices HA, and J,\, are obtained by successive applications

of the Cayley-Hamilton Theorem (the elements of these matrices are given in Appendix A).

By substituting (41) and (42) into (40), we obtain an equation from which G'() can be

determined:

GO = + (-(J)J,.,\. (43)

This is a 10 x 10 linear system of equations for the determination of the GO') which can be

written in the matrix form

AG = B (.14)

where the components of A, G and B are given by

AA =-61 - HA, + JAv, (45)

G\ G(,\) (46)

B\ 6 1,\ (47)

(see Appendix A). The solution to (44) is given by

6c'ý = A1(4)

In order to obtain a closed form expression for GO(), it is necessary to analytically invert the

matrix A. The manual inversion of matrix A is not feasible in light of its highly complex

structure; however, such a mathematical computation can now be done symbolically by

MathcmaticaTM (Wolfram 1988). The resulting inverse matrix A` is quite complex, but as

noted in (48), only the first column of its elements are needed. The resulting solution for

C;G(A) is:

GO) = -_ (6 - 371, - 217/2 - 2713 + 30rq4) /D G(6) = 9/D2

G(2) = - (3 + 3tj - 6q2 + 2t73 + 6774 )/D G(7) = 9/D
G (3) = (6 - 3n, - 12772 - 2773 - 6974) /D G(() = 9/D (49)

G (4) = -3 (31l + 2773 + 6774) /D 0(9) = 18/D

G(5) = 9/D G(O) = 0

where the denominator D is given by

7 2 15 2

D -= 3- 771 + ~711 r2 - 871j7 72 + 371.2 - 713 + -77173 (0
2 2 :3(50)

-27273 + 21774 + 2471s + 2171 q4 - 6772774
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Unfortunately, this three-dimensional form is significantly more complex than the two-

dimensional form derived by Pope (1975). Nevertheless, the result presented in (49) can be

shown to reduce to Pope's form in tile two-dimensional limit where the invariants 713 and 714

are zero and -, becomes equal to 17/1712. Using this ieduction and the redundancies in the

integrity L,,s (T(4 ) • T(OO) are linear combinations of TV), T('2) and T(3); see Pope 1975).

the resulting expression for G(A) in the two-dimensional limit becomes

- 3

3 - 2i1h - 6112

- 3 (51)
3 - 2r7 - 6712

(G(3) - 6

3 - 217 - 6712

The anisotropy tensor b" is then given by

b= -= 2,_ -6/2 [S- + (SW - WS) -2 (S-2 -I{S-2}I)l (52)

which can be shown to be identical to the expression in Pope (1975) after using (25)-(27)

along with the constants (19) of the Launder, Reece and Rodi model. It should be noted

that Pope used an alternative form for the third basis in (52) - constructed from the two

and three dimensional Kronecker delta- that is directly proportional to our T13 ).

It is now clear that the model derived by Pope (1975) (which is a special case of (52))

actually constitutes the explicit solution of the algebraic stress model of Bodi for b ill term.s

of S and Z. Whereas Pope's analysis is only valid for two-dimensional flows in an inertial

frame, we have now succeeded - by means of the representation theorem embodied in (32)

- to extend his result to three-dimensional flows in non-inertial frames.

Some comments are in order concerning how the three-dimensional solution o1)taiued

herein compares with the result derived recently by Taulbee (1992). The three-dimensional

result of Taulbee only contains tile bases TV'), T( ,T), T 6 , T where tile coefficients

GO), for the most part. only depend on tile invariant q12. This simplification results from tIle

neglect of the second strain-dependent term in the brackets on the r.h.s. of (22) (namely.

it is obtained by setting (3 = 2). We feel that this is a questionable approximation. Our

research on homogeneous shear flow indicates that the coefficient (3 - 2 is nonzero an(l must

be nearly half as large as the coefficient C'4 - 2 in order to obtain a good description of shear

flows. Furthermore, by neglecting this term in (22), tile coefficients of the solution become

virtually independent of the strain rate S0 and the model collapses to tile standard K - E

model in the absence of rotational strains. This stands in serious contradiction of the exact

two-dimensional result (52) as well as our new three-dimensional result.
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4. COMPARISON WITH OTHER NONLINEAR REYNOLDS STRESS

MODELS

The explicit algebraic stress model that we derived in Eqs. (32) and (49) formally con-

stitutes the equilibrium anisotropy tensor predicted by a hierarchy of second-order closure

models for homogeneous turbulence. These second-order closures are typically solved in con-

junction with a modeled transport for the turbulent dissipation rate that is of the general

form
DE e 0 _ Il" 0ae

- CC1KP 2 (7 ak + CTo, (53)

where Qd, C',2 and C, are either constants, or functions of the invariants of b, that vary

from one model to the next. For homogeneous turbulence, the transport term on the r.h.s.

of (53) vanishes and the turbulent kinetic energy is a solution of the transport equation

D KDK =P-e. (54)
Dt

From (53)-(54), it follows that P/E achieves the following equilibrium value (see Speziale

1991)
P' = C 2  (55)

that will be used to determine g in homogeneous turbulence. Hence, the explicit algebraic

stress model derived herein can be utilized to systematically explore the equilibrium states

predicted by a hierarchy of second-order closures in homogeneous turbulent flows.

As discussed earlier, the explicit algebraic stress model given by Eqs. (32) and (49)

represents an exact solution to the general implicit algebraic stress model (22) that includes

the model of Rodi (1976) as a special case. Consequently, by a direct analysis of this explicit

model, new insights can be gained concerning the problems that the traditional algebraic

stress models have had in the calculation of complex turbulent flows. The denominator of

the coefficients GO") given in (49) contains a sum of positive and negative terms which has

the potential to become zero rendering singular behavior. For equilibrium homogeneous

turbulence this will not happen since r7 ... q5 are constrained by the transport equations

for 7rj and e to yield a well behaved solution (see Speziale and Mac Giolla Mhuiris 1989).

However, when an algebraic stress model is applied to complex non-equilibrium turbulent

flows, where the underlying assumptions invoked in its derivation are no longer valid, singular

behavior can result. This becomes a distinct possibility in turbulent flows that have localized

strain rates that are large. When the traditional algebraic stress models of the form (22) are

applied to turbulent flows with large strain rates where D can approach zero, we would expect

the model to be ill-behaved. This problem has been experienced in the practical calculation of

10



complex turbulent flows where the Rodi algebraic stress model has at times failed to converge

when solved iteratively (Demuren and Rodi 1984 and Demuren, private communication).

Hence, it is clear that there is the need to regularize these explicit algebraic stress models.

Such an approach has been used recently in the kinetic theory with considerable success (see

Rosenau 1989).

The model derived herein can be regularized by a Pad6 approximation (this approach
was recently used by Yakhot et al. 1992 in the derivation of their RNG based dissipation

rate equation). The main idea behind this approach can be easily illustrated for the two-

dimensional model given in (52). For this case, the coefficient on the r.h s. of (52) can be

rewritten as
3 3

3- 2q, -6n 2  3-2772 +6( 2

where

=(,q*.,S,. /2 ~( W* W*�1/ 2  (57)

It is clear from (56) that, for sufficiently large strain rates 7q, singularities can occur; on the

other hand, the rotational strains do not cause any problems. In an equilibrium homogeneous
turbulent flow, q is typically less than one. For example, in homogeneous shear flow (with

shear rate S), the parameter SK/e achieves an equilibrium value of approximately 5. For

the Launder, Reece and Rodi model, this corresponds to q - 0.2 (see Speziale and Mac

Giolla Mhuiris 1989). Hence, we want to replace (56) with a regular function that, for q
sufficiently less than one, is approximately the same. This can be accomplished by a Pad&

approximation. For example, to the first order we take

72 • 1- 1 (58)
1 + 772

Substituting (58) into (56) then yields the expression

3 3(1 + 72)

3-2717 - 672 3 + 72 + 6( 2772 +6 (2

which is regular. Hence, we obtain a regularized model that is well-behaved for all strain

rates and constitutes a good approximation to the original model within the equilibrium

range that it formally applies. For practical applications, the regularized model

b*= 3(1 + 772) [S* + (S*W* - W*S*) -2 (S*2 -_ IS*2}" (60)3+ 772+ 6( 2772 + (2 3 I

should be used instead of the form (52) first derived by Pope (1975) for the special case
of the Launder, Reece and Rodi model. For the three-dimensional case, a more systematic

Pade approximation to (50) must be made. This leads to rather cumbersome expressions

that require further simplification and are currently under investigation.
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We will now show the relationship between the explicit algebraic stress model derived

herein and existing anisotropic eddy viscosity models. It is clear that (32), with the coeffi-
cients (49), is of the general mathematical form

/* =\ *ik X (61)

where (Ovk/x01)* = Skt + W,1 and Aijkl is a fourth rank tensor that is a function of S* and

W*. This constitutes the general form of anisotropic eddy viscosity models; the standard

eddy viscosity hypothesis of Boussinesq is recovered in the limit as Aijkl becomes an isotropic

tensor.

Our explicit algebraic stress model for three-dimensional turbulent flows is tensorially

quartic in the mean velocity gradients with coefficients that are ratios of polynomials in the

invariants of 9 and W. We will make use of the fact that
2

Tij = 2Kbij + 2oxKb* (62)

where a, = (C2 - 1) /(C0 - 2). The normalized anisotropy tensor b* can then be expanded

in a Taylor series. To the first order in the mean velocity gradients, we have

bi = -Sij (63)

from the algebraic stress model (32) and (49). The direct substitution of (63) into (62), after

making use of (25), yields

=2 "Ki - 2C K--' (64)
3 =-

where C* = •g (• - 02). This is the eddy viscosity form of the standard K - - model (see

Launder and Spalding 1974) with a coefficient C0 that, for the second-order closures consid-

ered herein, is close to the traditional value of 0.09. When quadratic terms are maintained,

we have

bi*= Sij ( Si*k W 3*j + S3;k Wk*i) J-_ 2 (Si*ksj - ls m n ) (65)

which, in an inertial frame, yields

2 - K- K K' 1'- 1-9 i (66Tij: '(3bi - 2C,-- ESij - --2 (5i•kj + SjkOki) + 02-E 2 S(ikki - 3S'"SmniJl (66)3

where f3, = •g2 (2 - C4)(4 - 02) and 012 = g2(2 - C3)(4 - C2). This is identical in form

to the nonlinear K - E model of Speziale (1987) when convective effects are neglected. The

nonlinear K - e model is given by
22, L2 .3 2 a(° 1m 'i

T = 3 K b i, - 2 C m ij-S 4 C D 0 E 2 V ' 3 23,b j ( 7/ (67)

-4C t" (kkj - 3mnmnbi)
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where CD and C,, are constants and

SDki -S -Ski (68)

Sj Dt -X t9 xk

is the Oldroyd derivative of S. When DRij/Dt is neglected, it is a simple matter to show

that (67) is of the same form as (66).

Eq. (66) is also of the same form as the anisotropic eddy viscosity models of Yoshizawa

(1984) and Rubinstein and Barton (1990) with one exception: it does not contain a term of

the type
/K- W,,m,•ni~i)" (69)
K33

f13-T2 (OikLwkj -3Wnmj(9

This kind of term was eliminated by Speziale (1987) because it yields an erroneous prediction

for isotropic turbulence subjected to a solid body rotation. More precisely, a term of the

form (69) predicts that an initially isotropic turbulence develops Reynolds stress anisotropies

when subjected to a solid body rotation - a result that is in contradiction of physical and

numerical experiments (see Wigeland and Nagib 1978 and Speziale, Mansour and Rogallo

1987). It is encouraging that this consistency constraint, concerning the vanishing of (69)

to the second order in the mean velocity gradients, has now been obtained directly by a

systematic analysis of the Reynolds stress transport equation.

It is interesting to note that the quadratic approximation (66) to the three-dimensional

algebraic stress model is of the same tensorial form as the full nonlinear two-dimensional

model (60). However, due to the strain-dependent coefficients in (60), more physics is ac-

counted for. For example, Eq. (60) properly predicts that in a rapidly rotating frame - where

f9, and hence (, tends to infinity - bi• and P go to zero. This is the restabilization effect

of turbulence in a rapidly rotating frame that the usual anisotropic eddy viscosity models

are unable to predict (see Speziale, Gatski and Mac Giolla Mhuiris 1990). Hence, we feel

that the two-dimensional algebraic stress model (60) should be tried in the future as an

alternative to the more commonly used quadratic anisotropic eddy viscosity models. Some

applications of (60) will be considered in the next section.

5. ILLUSTRATIVE EXAMPLES

In order to demonstrate the efficacy of the regularized algebraic stress model (60) derived

in this study, we will consider a few applications to non-trivial, two-dimensional turbulent

flows involving shear and rotation. We will base our calculations on the Speziale, Sarkar and

Gatski (1991) second-order closure (hereafter, referred to as the SSG model). The regularized

13



algebraic stress model can be rewritten in the form

2j = 2 Kbij - 6(1 + +72)aK [S,' + (SiWz, + S;*kWk) - 2 (S-Sj -

r3= 6 3 3+ 77+6C2?72 +6C 2  3
(70)

where a, = (C2 - 4)/(C3 - 2) and S*, W*, 77 and C are as defined in (25), (26), and

(57). Some remarks are needed concerning how P/c and II/2 are evaluated in the model

coefficients (21) for the SSG model. P/c is calculated using (55) which is formally valid

for equilibrium homogeneous turbulent flows; we take Ihb • 0.11 which is the universal

equilibrium value predicted by the SSG model for two-dimensional homogeneous turbulence

(see Speziale, Sarkar and Gatski 1991). This yields the following choice of constants

C, = 6.80, C2 = 0.36, C3 = 1.25, C4 = 0.40, g = 0.233 (71)

for the explicit algebraic stress model corresponding to the SSG second-order closure.

The explicit algebraic stress model (70) is solved in conjunction with modeled transport

equations for K and e. These equations are of the same general form as those used in the

K - - model and are given by:

DK avh 8 (LT OK)

D i- C+ (T (72)

De = 8Thi 62  a1 ( T ae
Dt - Tij - + -i I (73)

Dt K K ax, K Oxi a, axi

where vT = CmK 2 /c, C, = 0.09, CK = 1, a, = 1.3, Cei = 1.44 and C,2 = 1.83. Hence, the

explicit algebraic stress model derived herein formally constitutes a two-equation turbulence

model; the K-c model is recovered when (70) is linearized with respect to the mean velocity

gradients. While this explicit algebraic stress model is a two-equation model, it incorporates

much more physics than the K - e model since it is consistent with second-order closures in

the limit of equilibrium homogeneous turbulent flows.

The first example that we will consider is the case of homogeneous shear flow in a rotating

frame. An initially decaying isotropic turbulence is, at time t = 0, subjected to a uniform

shear rate S in a reference frame rotating steadily with angular velocity f. The corresponding

mean velocity gradient tensor is given by

S(0S 0\
S0 0 0 (74)

0 0 0

and the angular velocity of the reference frame is given by fl, = (0, 0, f1) (see Figure 1). In

Table 1, the equilibrium values predicted by the new explicit algebraic stress model (ASM)
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for homogeneous shear flow are compared with the experimental data of Tavoularis and

Corrsin (1981) as well as with the predictions of the SSG model and the standard K -

model. From these results it is clear that: (a) the new explicit ASM performs far better than

the standard K - e model, and (b) the new explicit ASM yields results in close proximity

of the full SSG second-order closure model. The small differences between the new ASM

model and the full SSG model arises from two sources: the neglect of the quadratic return
to isotropy term and the Pad6 approximation that was implemented to regularize the model.

However, it is clear from these results that the new regularized ASM model constitutes an

excellent approximation to the full SSG model for equilibrium flows.

Now, we will compare the predictions of these three models for the time-evolution of the

turbulent kinetic energy (K* = K/Ko, t* = St) with the large-eddy simulations (LES) of

Bardina, Ferziger and Reynolds (1983) for rotating homogeneous shear flow. In Figures 2(a)-

2(c), the model predictions for three rotation rates (fl/S = 0, fD/S = 0.5 and fl/S = -0.5)

are compared with the LES which is for an initial condition of eo/SKo = 0.296. From these

results it is clear that the new algebraic stress model does an excellent job in capturing the

trends of the LES. It yields results that are far superior to the standard K - - model and

are in close proximity to the SSG model. The main discernible difference between the new

algebraic stress model and the SSG second-order closure is during the early transient where

it responds more abruptly to the application of the shear since it does not account directly

for relaxation effects. However, it is important to note how the new ASM is far superior to

the standard K - - model in responding to changes in the rotation rate. This is illustrated in

Figures 3(a)-3(c) where it can be seen that the new algebraic stress model is able to capture

the effect of rotations on homogeneous shear flow. In contrast to these results, the standard

K - e erroneously yields the same results for all rotation rates - a deficiency tied to the

Boussinesq eddy viscosity hypothesis.

The last example that we will consider is the case of fully-developed turbulent channel

flow subjected to a spanwise rotation with constant angular velocity fQ (see Figure 4). We will

consider the experimental test case of Johnston, Halleen and Lezius (1972) for a Reynolds

number Re = 11,500 and a rotation number Ro = 0.21 (here, Re = UoH/v and Ro =

flH/Uo where UO is the bulk mean velocity). In Figure 5(a) the prediction for the mean

velocity profile obtained from the SSG second-order closure by Speziale, So and Younis

(1992) is compared with the experimental data of Johnston, Halleen and Lezius (1972). The

computations were done using law of the wall boundary conditions. In Figure 5(b), the same

comparisons are made for the new explicit algebraic stress model (60) derived herein. It is

clear from these results that the new ASM yields an asymmetric mean velocity profile that

is very similar to that obtained from the full second-order closure. Due to the use of wall
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functions - as well as the neglect of roll instabilities (see Speziale, So and Younis 1992) - the

specific quantitative comparisons are not that good. The important point, however, is that

the new algebraic stress model yields an asymmetric mean velocity profile in close proximity

to that obtained from a full second-order closure. On the other hand, simpler two-equation

models like the standard K - e model erroneously predict that the mean velocity profile is

unaffected by a system rotation and remains symmetric (see Speziale 1991). The improved

predictions of the new explicit ASM in rotating shear flows arises from the incorporation of

rotational strains through the terms W* and ¢.

6. CONCLUSION

Explicit algebraic stress models for two and three dimensional turbulent flows, in non-

inertial frames, have been obtained for a hierarchy of second-order closure models that are

tensorially linear in the Reynolds stress anisotropy. These models were obtained using the

standard local equilibrium hypothesis and, therefore, constitute the explicit solution to the

traditional algebraic stress models generalized to include non-inertial effects and a range of

pressure-strain models. They also formally represent the equilibrium states predicted by this

hierarchy of second-order closures in homogeneous turbulent flows. A direct examination of

these explicit models has shed new light on the limitations of the traditional algebraic stress

models in applications to complex turbulent flows. For localized strain rates that are large,

traditional algebraic stress models can become singular. These models need to be regularized

- a task that can be achieved by means of a Pad6 approximation as demonstrated in this

paper.

The results of this study have presented the first definitive evidence as to why the tradi-

tional algebraic stress models are ill-behaved, yielding numerical problems in many applica-

tions. These models should eventually be abandoned in favor of regularized versions of the

explicit algebraic stress models derived herein. The full three-dimensional form of the explicit

models is rather complicated and work is underway to simplify them by means of a ratio-

nal approximation procedure. However, in the mean time, the regularized two-dimensional

form (60) can be used in practical applications. This simplified model is formally valid for

two-dimensional equilibrium flows and collapses to the recently proposed anisotropic eddy

viscosity models in the limit of small strain rates. However, while its general tensorial form

is as simple as the commonly used anisotropic eddy viscosity models, it incorporates much

more physics since the coefficients depend nonlinearly on both rotational and irrotational

strains. A version of (60) based on the SSG second-order closure was applied to rotating

shear flows herein with encouraging results. These developments, when combined with some

recent improvements in the modeling of the turbulent dissipation rate, can lead to a new
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generation of two-equation models that can serve as a useful companion to second-order

closures in the calculation of complex turbulent flows.
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APPENDIX A

The elements of the matrices Hy,\ and Jy\ are given in terms of 77i as

0 0 2 0 0 0 0 0 0 0

0 0 0 0 -1 0 0 0 0 0

2- 0 0 0 0 0 0 0 0 03

-2 0 0 0 0 1 0 0 0 03

0 Z-17 0 0 0 0 0 1 0 0
=2 (Al)

2_7 0 272 171 0 0 0 0 -1 0

0 -q74 0 0 ?72 0 0 0 0 -2

0 00000000
3

15 0 74 0 m 0 0 0 0
3 3 2

0 1_AM_! 0 0 ?_u 0 -'• ! 0 0
3 6 3 3 3

0 1 0 0 0 0 0 0 0 0

- 772 0 0 0 0 3 0 0 0 0

0 0 0 0 -1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

dY = 0 0 772 277, 0 0 0 0 -3 0 (A2)

0 2 0 0 0 0 -1 0 0 02

7272 0 0 -277 4  0 -2q2 0 0 0 0

277s - 711712 0 -2774 0 0 771 0 0 0 0

0 0 0 0 =-a 0 0 0 0 -12

0 0 2 2171?72- 275 0 0 0 0 -2772 0
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The elements of the matrix A are a linear combination of the elements of the matrices

Hy and J.., as well as the identity matrix. The matrix structure is then given by

-1 A12 A 13 A 14  0 A16  A 17  Als A 19  0

A2, -1 0 0 A25 A26  A27  A28  0 A210

A3 1  0 -1 0 A35 A 36  0 A38 A 39  A 3 10

0 0 0 -1 A45 A46  A 47  0 A49  A410

A - 0 A52 A 53  0 --1 0 A57  0 A59  A 5 o (A3)

0 0 0 A6 4  0 -1 A 67  A6 8  A 69  0

0 0 0 0 0 A76  - 1 0 0 A7 10

0 0 0 0 A85  0 0 -1 0 A81o

0 0 0 0 A95 A 96  0 0 --1 A 9 1 o

0 0 0 0 0 0 A107  0 A109  -1

with the nonzero elements determined from

A = -b,\, - H•y + J\. (A4)

The vector B is given by

1

0

0

0

aB= 0  (A5)

0

0

0

0

0

19



REFERENCES

Bardina, J., Verziger, J. H. and Reynolds, W. C. 1983. Improved turbulence models based

on large-eddy simulation of homogeneous, incompressible turbulent flows. Stanford

Univ. Technical Report No. TF-19.

Demuren, A. and Rodi, W. 1984. Calculation of turbulence-driven secondary motion in

non-circular ducts. J. Fluid Mech. 140, 189.

Gibson, M. M. and Launder, B. E. 1978. Ground effects on pressure fluctuations in the

atmospheric boundary layer. J. Fluid Mech. 86, 491.

Hinze, J. 0. 1975. Turbulence. McGraw-Hill.

Johnston, J. P., Halleen, R. M. and Lezius, D. K. 1972. Effects of a spanwise rotation on

the structure of two-dimensional fully-developed channel flow. J. Fluid Mech. 56, 533.

Launder, B. E. 1990. Phenomenological modeling: Present and future. Lecture Notes in

Physics (ed. J. L. Lumley), Vol 357, p. 439, Springer-Verlag.

Launder, B. E. and Spalding, D. B. 1974. The numerical computation of turbulent flows.

Computer Methods in Applied Mechanics and Engineering 3, 269.

Launder, B. E., Reece, G., and Rodi, W. 1975. Progress in the development of a Reynolds

stress turbulence closure. J. Fluid Mech. 68, 537.

Lumley, J. L. 1970. Toward a turbulent constitutive equation. J. Fluid Mech. 41, 413.

Lumley, J. L. 1978. Computational modeling of turbulent flows. Adv. Appl. Mech. 18,

123.

Pope, S. B. 1975. A more general effective viscosity hypothesis. J. Fluid Mech. 72, 331.

Reynolds, W. C. 1987. Fundamentals of turbulence for turbulence modeling and simula-

tion. Lecture Notes for Von Karman Institute, A GARD Lecture Series No. 86, North

Atlantic Treaty Organization.

Rivlin, R. S. 1957. The relation between the flow of non-Newtonian fluids and turbulent

Newtonian fluids. Q. Appl. Math. 15, 212.

Rodi, W. 1976. A new algebraic relation for calculating the Reynolds stresses. ZAMM 56,

T219.

20



Rosenau, P. 1989. Extending hydrodynamics via the regularization of the Chapman-Enskog

expansion. Phys. Rev. A 40, 7193.

Rubinstein, R. and Barton, .J. M. 1990. Nonlinear Reynolds stress models and the Renor-

malization group. Phys. Fluids A 2, 1472.

Saffman, P. G. 1977. Results of a two-equation model for turbulent flows and development

of a relaxation stress model for application to straining and rotating flows. Proc.

Project SQUID Workshop on Turbulence in Internal Flows (ed. S. Murthy), p. 191,

Hemisphere Press.

Spencer, A. J. M. 1971. Theory of invariants. Continuum Physics (ed. A. C. Eringen),

Vol. 1, p. 1, Academic Press.

Speziale, C. G. 1987. On nonlinear K - f and K - - models of turbulence. J. Fluid Mech.

178, 459.

Speziale, C. G. 1991. Analytical methods for the development of Reynolds stress closures

in turbulence. Ann. Rev. Fluid Mech. 23, 107.

Speziale, C. G., Mansour, N. N., and Rogallo, R. S. 1987. The decay of isotropic turbulence

in a rapidly rotating frame. Proceedings of the 1987 Summer Program of the Center

for Turbulence Research (eds. P. Moin, W. C. Reynolds, and J. Kim), p. 205. Stanford

University Press.

Speziale, C. G. and Mac Giolla Mhuiris, N. 1989. On the prediction of equilibrium states

in homogeneous turbulence. J. Fluid Mech. 209, 591.

Speziale, C. G., Gatski, T. B., and Mac Giolla Mhuiris, N. 1990. A critical comparison of

turbulence models for homogeneous shear flows in a rotating frame. Phys. Fluids A 2,

1678.

Speziale, C. G., Sarkar, S., and Gatski, T. B. 1991. Modeling the pressure-strain correlation

of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227, 245.

Speziale, C. G., So, R. M. C. and Younis, B. A. 1992. On the prediction of turbulent

secondary flows. ICASE Report No. 92-57, NASA Langley Research Center.

Taulbee, D. B. 1992. An improved algebraic Reynolds stress model and corresponding

nonlinear stress model. Phys. Fluids A 4, 2555.

21



Tavoularis, S. and Corrsin, S. 1981. Experiments in nearly homogeneous turbulent shear

flow with a uniform mean temperature gradient. Part 1. J. Fluid Mcch. 104, 311.

Wigeland, R. A. and Nagib, H. M. 1978. Grid-generated turbulence with and without

rotation about the streamwise direction. lIT Fluids and Heat Transfer Report R78-1.

Wolfram, S. 1988. Mathematica, Addison-Wesley Publishing Co.

Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., and Speziale, C. G. 1992. Devel-

opment of turbulence models for shear flows by a double expansion technique. Phys.

Fluids A 4, 1510.

Yoshizawa, A. 1984. Statistical analysis of the deviation of the Reynolds stress from its

eddy viscosity representation. Phys. Fluids 27, 1377.

22



Equilibrium Standard New ASM SSG Model Experimental
Values K - E Model Model Data

bl 0 0.204 0.218 0.20

b12  -0.217 -0.157 -0.163 -U. 15

N22 0 -0.149 -0.146 -0.14

b0 -0.055 -0.072 -0.06

SK/E 4.82 6.02 5.76 6.0

Table 1. Comparison of the model predictions with the experimental equilibrium values in

homogeneous shear flow measured by Tavoularis and Corrsin (1981).
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Figure 1. Schematic of homogeneous shear flow in a rotating frame.
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New Explicit ASM
SSG Model

(a) K-E Model
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Figure 2. Trime evolution of tihe turbulent kinetic energy inl rotating homogeneous shear

flow: Comparison of tihe model predictions with thle large-eddy simulations of Vardina ct al.

(1983). (a) n/S = 0, (b) f2is = 0.5 a,,d (c) n2/,S = -0.5.
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Figure 2. Time evolution of the turbulent kinetic energy in rotating homogeneous shear

flow: Comparison of the model predictions with the large-eddy simulations of Bardina et al.
(1983). (a) fllS = 0, (b) UilS = 0.5 and (c) illS = -0.5.
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New Explicit ASM
SSG Model

(c) K- E Model
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Figure 2. Time evolution of the tarbulent kinetic energy in rotating homogeneous shear

flow: Comparison of the model predictions with the large-eddy simulations of lBardina ct al.

(1983). (a) I/S = 0, (b) fl/S = 0.5 and (c) fi/S = -0.5.
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Figure 3. Time evolution of the turbulent kinetic energy in rotating homogeneous shear flow:

(a) large-eddy simulations of Bardina et al. (1983), (b) new explicit algebraic stress model,

and (c) standard K - - model.
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(b) New Explicit ASM
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Figure 3. Time evolution of the turbulent kinetic energy in rotating homogeneous shear flow:

(a) large-eddy simulations of Bardina et al. (1983), (b) new explicit algebraic stress model,
and (c) standard K - - model.
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(c) K-, Model
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Figure 3. Time evolution of the turbulent kinetic energy in rotating homogeneous shear flow:

(a) large-eddy simulations of Bardina dt al. (1983), (b) new explicit algebraic stress model,

and (c) standard K - e model.
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Figure 4. Schematic of fully-developed turbulent channel flow in a rotating frame.
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Figure 5. Comparison of the model predictions (-) for the mean velocity profile with the ex-

perimental data (0) of Johnston et al. (1972) for rotating channel flow (Re = 11,500, Ro =
0.21): (a) SSG second-order closure (taken from Speziale et at. 1992) and (b) new explicit
algebraic stress model.
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